tds > exposure

TDS Exposure Assessment Tool MCRA

Jacob van Klaveren, RIVM, NIPH, ANSES, Ghent University, Universitat Rovira i Virgili, Fera, IFR

CONTENT

- What is the Monte Carlo Risk Assessment (MCRA) software
 - Support of Dutch Government, EFSA (pesticides), DG SANTE (pesticides)
- TDS exposure assessment achievements
 - harmonisation in Europe
 - how well are sources of variation and uncertainty covered
- How the MCRA modelling approach and TDS data can improve European risk assessment and risk management decisions
 - Methyl mercury
 - Acrylamide

MONTE CARLO RISK ASSESSMENT (MCRA)

Easy to use web-based software (mcra.rivm.nl)

Numeral instructions for Pathonicalds and the East conceases protocoly to Math. (When and 2005)

MCRA 8

MCRA stands for Monte Carlo Risk Assessment. MCRA is a web-based system for probabilistic exposure and risk assessment of chemicals in the diet. The MCRA system brings together statistical models, shared data and data uploaded by the user. MCRA 8 also provides Cumulative Exposure Assessment for chemicals grouped in a Cumulative Assessment Group for which a single health effect is considered relevant. Optionally exposure from other routes can be added in an Aggregate Exposure Assessment. MCRA 8.0 was developed in EU project ACROPOLIS

Publications and reports using MCRA

Login

Username		
Password		
Go to registration	LOGIN	

tds > exposure

Organize your data for MCRA

Download PDF Download Template MDB

Introduction

This Data Formats Manual is intended to assist with setting up the database files/spreadsheets for MCRA 8. File- or spreadsheet-names are restricted to maximum 50 characters length.

- Supported versions of MS Access are: Access 2000, Access 2003-2007 (extension '.mdb'), Access 2007-2010 (extension '.mdb' or '.accdb').
- · Supported versions of MS Excel are: Excel 2010 (extension '.xlsx') and earlier versions (extension '.xls').

General structure of the input data

The input databases/spreadsheets should provide sufficient information to run assessments. The input data (or assessment data) can be categorized into the following logical entity groups: Base entities:

- · Food data
- Compound data

Assessment data:

- Consumption data (data from a food survey)
- Concentration data (sample data)

tds > exposure

Connect your data to MCRA

RELEVANT QUESTIONS FOR RISK ASSESSMENT

DO WE OVER- OR UNDERESTIMATE

- Harmonization and exposure levels influenced by
 - harmonized food coding in Europe (FoodEx)
 - applying a usual intake model
- How representative is a TDS
 - seasonal and annual variation (e.g. DON)
 - regional variation (e.g. environmental contaminants)
 - variation in cooking and preparation methods (e.g. acrylamide)
- How complete is risk assessment based on TDS and/or monitoring

TRANSFORMATION OF TDS DATA TO EU-LEVEL

- Foodex coding, FoodCase-Risk, SSD format
- Historical TDS of the past and new TDS data in WP9

Table 4: Percentiles of long-term exposure to dioxin-like compounds in adults living in Belgium, Netherlands, France, UK and Spain obtained via two classification systems

		Total dioxin-like compounds						
		Exposure (pg TEQ/kg bw/day)						
	Using national codes			Using FoodEx1 codes				
	P50	P90	P95	P99	P50	P90	P95	P99
Belgium	0.69	1.46	1.82	2.60	0.65	1.40	1.75	2.61
France	0.39	0.78	0.95	1.38	0.40	0.76	0.91	1.21
The Netherlands	0.78	1.65	2.53	4.87	0.77	1.64	2.48	4.86
Spain	0.48	1.17	1.53	2.40	0.49	1.19	1.53	2.42
UK	0.99	1.55	1.76	2.23	0.99	1.55	1.75	2.16

How to address variation and uncertainty

TDS is based on a sampling design

- Variation might be well-covered or not covered in sampling design
- 90-95% food items included in shopping list
- Only pooled samples are analysed and consequently one measurement value for a pooled sample (variation lost)

Monitoring data

- Much more data available (variation known)
- Only a limited number of food items monitored (incomplete)
- Quite often biased towards problems (depends on sampling requirements in EU legislation)
- New exposure model based on mean (TDS) and variation (monitoring) implemented in the MCRA software

How to address variation and uncertainty

Model selection

ø	
σ	
0	
F	

displayed in the form of approximate confidence substantially longer.	a intervals. Warning: computation time may be
Perform uncertainty analysis	8
lumber of iterations per resampled set	10000
lumber of resample cycles	100
Resample concentrations	2
Parametric uncertainty	×.

- Run with 1. uncertainty
- 2. Include enough iteration to get a stable confidence interval (e.g use 100 resample cycles)
- 3. Use parametric uncertainty
- 4. Save/Next step

What if the variation in a TDS is not covered (example DON)

- 1. If TDS is covering all sources of variation for DON, then the mean exposure can be trusted (no problem at the P95 for risk managers)
- 2. If TDS is not covering sources of variation for DON, you might wish to include additional information on variation as an uncertainty (> TDI in red circle)

tds > exposure

MCRA as a risk management tool, two case studies: 1) Acrylamide 2) Mercury and methylmercury in food

MCRA risk management tool case study acrylamide

Objective of this work:

- Test this risk management tool for acrylamide (AA) case study using a national TDS and monitoring data.
- Show how expert opinion can be taken into account, and how a risk mitigation can be performed by setting limit values.

Data and Method:

- To assess the impact of a new regulation ('indicative values') on EFSA distribution of AA levels across food groups (EFSA, 2015)
- To apply this impact on French TDS concentration data
- To assess the impact on exposure and contributions

Occurrence data of AA per food category

Table 5: Distribution of acrylamide (AA) (middle bound (MB) estimates) according to the origin of data, expressed in µg/kg

	Food category ^(h)	Origin ^(a)	n ^(b)	LC ^(c)	Mean ^(d)	Median ^(d)	P95 ^(d)
1	Potato fried products (except potato	EC	1 378	13.9	332	196	1 1 1 5
1	crisps and snacks)	FA	316	15.8	201	170	493
	French fries and potato fried, fresh or pre- cooked						
1.1	/ sold as ready-to-eat	EC	877	12.7	308	218	904
1.2	/ sold as fresh or pre-cooked, analysed as sold	EC	74	40.5	367	88	1 888
1.2	/ sold as fresh or pre-cooked, prepared as	EC	241	14.5	288	103	1 059
1.5	consumed ^(e)	FA	316	15.8	201	170	493
1.4	/ sold as fresh or pre-cooked, preparation unspecified	EC	90	15.6	368	174	1 468
1.5	Other potato fried products	EC	96	2.1	606	544	1 549
2	Detate aviana and sneeks	EC	800	7.0	580	389	1 841
2	Potato crisps and snacks	FA	33 701	0.0	384	310	920
2.1	Datata arises mada from frash potatoos	EC	498	6.6	654	431	2 0 5 0
2.1	Potato crisps made nom nesn potatoes	FA	30 969	0.0	388	310	934
2.2	Dotate crisps made from potate dough	EC	63	7.9	316	191	870
2.2	Potato ensps made nom potato dougn	FA	2 7 3 2	0.3	338	298	747
2.3	Potato crisps unspecified	EC	216	7.9	519	348	1 465

Provided in the EFSA opinion on AA

EFSA opinion on indicative value for Acrylamide

 Table 2:
 Indicative values for AA in foodstuffs according to Commission Recommendation

 2013/647/EU

Foodstuff	Indicative value (µg/kg)
French fries ready-to-eat	600
Potato crisps from fresh potatoes and from potato dough	1.000
Potato based crackers	1 000
Soft bread	
- Wheat based bread	80
- Soft bread other than wheat based bread	150
Breakfast cereals (excl. porridge)	
- bran products and whole grain cereals, gun puffed grain (gun puffed only relevant if	
labelled)	400
- wheat and rye based products ⁽¹⁾	300
- maize, oat, spelt, barley and rice based products ⁽¹⁾	200

- Provided in the EFSA opinion on AA
- These values are not safety threshold but indicate the need to investigation

TDS Food correspondence with EFSA data

Correspondence between TDS and EFSA food groups was established

TDS food name	EFSA food group	Mean	95 th percentile	Indicative value
		concentration	concentration	(Limit)
Potato fried	Potato fried products (except potato crisps and snacks)	332	1115	600
Potato crisps	Potato crisps and snacks	580	1841	1000
Wheat bread and rolls	Wheat soft bread	38	120	80
Wheat bread, white	Wheat soft bread	38	120	80
Wheat bread, brown	Wheat soft bread	38	120	80
Wheat bread, with bran	Wheat soft bread	38	120	80
Wheat toast bread, white	Wheat soft bread	38	120	80
Corn flakes	Maize, oat, spelt, barley and rice based products	73	230	200
Cereal flakes	Breakfast cereals, unspecified	100	350	200
Muesli	Breakfast cereals, unspecified	100	350	200
Biscuits, sweet, plain	Biscuits and wafers	201	810	500
Biscuits, chocolate filling	Biscuits and wafers	201	810	500
Biscuits, fruit filling	Biscuits and wafers	201	810	500
Coffee drink, espresso	Roasted coffee (dry)	244	563	450
Instant coffee, liquid	Instant coffee (dry)	674	1133	900

How to perform analyses in MCRA

- Model step: to perform a reduction scenario select this option and foods
- Foods with a concentration higher than 'indicative value' are removed in exposure assessment

ö -	e	8						Model	
	S	Ē	Screening	Concentrations	Scenario Analysi	s Exposures	Monte-Carlo	Uncertainty	
	1	-	Output						
			Some foods ha Concentration such foods are	ave a concentratio Distributions). Exp e assumed to have	nn percentile higher posure assessment e all concentrations	than the specifie can be run in a s reduced by the fa	d limit (in table cenario where so actor Percentile/L	ome or all of .imit	
			Apply Reduct	tion-to-Limit sce	enario				
			Apply Reduct Select foods v (only foods w shown)	tion-to-Limit sce where a reducti /ith Percentile >	enario on is assumed Limit are	Wheat bread an Wheat bread, w Wheat bread, b Wheat bread, w	d rolls hite rown ith bran	Î	

Results for AA case study: Exposure assessment

Percentile	Without reduction scenario (ng/kg bw/day)	With reduction scenario (ng/kg bw/day)
50	325.2	253.1
90	1371	843.2
95	1857	1144
99	3205	2053
99.90	4830	2802

Substantial reduction

Note: preliminary results. Results needs to be checked.

Results for AA study case: food contribution to total exposure

Without reduction scenario

Food name	Contribution
Potato fried	55.2
Coffee drink, espresso	12.2
Biscuits chocolate filling	6.63
Snack food	3.94
Potato crisps	3.30
Pizza and pizza-like pies	2.72
Biscuits, sweet, plain	1.51
Wheat bread, white	1.42
Chocolate cake	1.35
Hot chocolate	1.22
Fruit pie	0.96
Wheat bread with bran	0.95
Chocolate (Cocoa) products	0.88
Instant coffee liquid	0.87

With reduction scenario

Food name	Contribution
Potato fried	45.0
Coffee drink, espresso	14.8
Biscuits chocolate filling	6.20
Snack food	5.97
Pizza and pizza-like pies	4.12
Potato crisps	2.71
Chocolate cake	2.05
Hot chocolate	1.85
Fruit pie	1.45
Wheat bread, white	1.43
Biscuits sweet plain	1.41
Chocolate (Cocoa) products	1.34
Cereal-based dishes	1.19
Instant coffee liquid	1.04

18

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration (Grant Agreement no. 289108)

Note: preliminary results. Results needs to be checked.

EC WORKING DOCUMENT, Expert Committee on Environmental and Industrial Contaminants (29/05/2015) Mercury and methylmercury in food

Questions asked by the CZ food authority:

- 1. How new limits influence intake of Hg/MeHg for the whole CZ population?
- 2. What are the main Hg/MeHg risk drivers (foods) in CZ diet?
- 3. What limits we would need to keep at least 99,99% of population under EU HBDG?

(= only 1000 persons will be over HBDG / CZ population 10M, = 10 pregnant women/year)

MCRA risk management tool methyl mercury

CZ TDS Data for years 2004-2013

- Expected concentrations of total mercury in foods (mean + P95)
 - EFSA Journal 2012;10(12):2985: Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food.

New limits for total mercury in foods

EC WORKING DOCUMENT, Expert Committee on Environmental and Industrial Contaminants (29/05/2015):Mercury and methylmercury in food

HBDG for risk characterization

- TWI for MeHg = 1,3 ug (expressed as Hg)/kg bw/w = 186 ng/kg bw/d (EFSA 2012)
- TWI for inorganic Hg = 4 ug (expressed as Hg)/kg bw/w = 571 ng/kg bw/d (EFSA 2012)

tds ► exposure

MCRA test results: existing exposure UB

TDI calculated from TWI for MeHg = 186 ng Hg/kg bw/d. We used limit for MeHg because main risk drivers are linked with fish group where we expect at least 85% Hg in form of MeHg.

Note: preliminary results. Results needs to be checked.

Highest risk drivers

Exposure percentiles

HBDG EFSA: Total mercury, **TDI = 0.186 (μg/kg bw/day)**, Mean exposure: 0.01375 (0.0132, 0.0144) (μg/kg bw/day)

Percentage	Exposure (µg/kg bw/day)	Lower bound (p2,5)	Upper bound (p97,5)	Percentage of reference dose
50.00	0.005777	0.005675	0.005949	3.11
90.00	0.03709	0.03506	0.04033	19.94
95.00	0.05896	0.05568	0.06226	31.70
99.00	0.1008	0.0979	0.1119	54.20
99.90	0.1617	0.1506	0.1773	86.91
99.99	0.2365	0.1595	0.2413	127.15

MCRA test results: when we apply new MLs - UB

Exposure percentiles

HBDG EFSA: Total mercury, **TDI** = **0.186 (μg/kg bw/day)**, Mean exposure: 0.01333 (0.01278, 0.014) (μg/kg bw/day)

Percentage	Exposure (µg/kg bw/day)	Lower bound (p2,5)	Upper bound (p97,5)	Percentage of reference dose
50.00	0.005629	0.005539	0.005829	3.03
90.00	0.03558	0.03244	0.03826	19.13
95.00	0.05725	0.05439	0.05949	30.78
99.00	0.1007	0.09714	0.1113	54.16
99.90	0.1616	0.1504	0.1763	86.89
99.99	0.2358	0.1594	0.2409	126.78

Practically no change in exposure doses for 99.9-99.99P.

New MLs do not change intake of Hg considerably.

MCRA test results: when we apply modified new MLs - UB

+ decrease limit for "sea fish" to 0,3 mg/kg (instead of 0,5 mg/kg)

Exposure percentiles

HBDG EFSA: Total mercury, **TDI = 0.186 (µg/kg bw/day)**, Mean exposure: 0.01011 (0.009624, 0.0107) (µg/kg bw/day)

Note: preliminary results. Results needs to be checked.

CONCLUSIONS

(be aware of uncertainties related to data structure and character of usual TDS design; benefit of omega-3 FA not evaluated)

1. How new limits influence intake of Hg/MeHg for the whole CZ population?

New MLs do not change chronic intake of Hg/MeHg for CZ population (4-90y) considerably.

2. What are the main Hg/MeHg risk drivers (foods) in CZ diet?

 Sea fish foods are the main risk drivers for Hg/MeHg. Probability to be over MLs is about 5% (based on TDS data working with pooled samples). Really Useful Things

- 3. What limits we would need to keep at least 99,99% of population under EU HBDG?
- Decreasing of ML for "sea fish" on 0,3 mg Hg/kg foods (instead of 0,5 mg/kg) would protect about 99.99% of CZ population 4-90y. It does not take into account differences in sea fish species!)
- More than 99.99% of CZ women at child bear age (18-50y) is under HBDG even with old MLs.

Note: preliminary results. Results needs to be checked.

tds ► exposure

Limitations of the approach

- Need to discuss the correspondence between food groups
 - Question of mixed dishes
 - Pooling foods from different groups? Ex: if we pooled snacks with potato crisps → different limits?
- A simple risk management model approach has been implemented, which should be improved based on better understanding of risk mitigation measures
- Result is a 'proof of principle'

Validation of MCRA based on CZ biomonitoring data

Sampling of full blood:

- Studied population groups: Adult men and women (blood donors) aged
 18 58 years
- About 400 of blood samples per year (in total, 4472 adults from 1996 to 2009). Blood levels measured annually until 2003, since then biannually
- The same whole blood samples for both biomarkers (Pb/Se)
- Czech TDS ongoing since 1994
 - Sampling period: until 2003 1 year, since 2004 2 years
- ► For comparison, we used two types of TDS results:
 - **Point estimate** (Tier 1 information) for average person (4-90 years).
 - Monte Carlo Risk Assessment software (MCRA), Observed Individual Means model (OIM) for specific age/sex groups and years

tds ► exposure

Relationship between dietary exposure and blood lead levels Lead: <u>TDS point estimate (average person aged 4 – 90 years)</u>

tds ► exposure

Concluding remarks

- Exposure assessment using TDS data is harmonized at the European level using the MCRA software
- Variation and uncertainty are important and can affect the quality of the TDS exposure assessment results
- We demonstrated the relevance of using TDS data and the adjusted MCRA software for the European Commission in their discussion to set limits aiming to lower exposure levels
- TDS data should be used in future European risk assessment by EFSA and by European risk managers

